Skip to content
百科百科
操作系统
设计模式
算法
题解
java
leetcode
  • leetcode
    • /leetcode/Leetcode 题解.md
      • Leetcode 题解
        • Leetcode 题解 - 二分查找
          • Leetcode 题解 - 位运算
            • Leetcode 题解 - 分治
              • Leetcode 题解 - 动态规划
                • Leetcode 题解 - 双指针
                  • Leetcode 题解 - 哈希表
                    • Leetcode 题解 - 图
                      • Leetcode 题解 - 字符串
                        • Leetcode 题解 - 排序
                          • Leetcode 题解 - 搜索
                            • BFS
                              • 1. 计算在网格中从原点到特定点的最短路径长度
                                • 2. 组成整数的最小平方数数量
                                  • 3. 最短单词路径
                                  • DFS
                                    • 1. 查找最大的连通面积
                                      • 2. 矩阵中的连通分量数目
                                        • 3. 好友关系的连通分量数目
                                          • 4. 填充封闭区域
                                            • 5. 能到达的太平洋和大西洋的区域
                                            • Backtracking
                                              • 1. 数字键盘组合
                                                • 2. IP 地址划分
                                                  • 3. 在矩阵中寻找字符串
                                                    • 4. 输出二叉树中所有从根到叶子的路径
                                                      • 5. 排列
                                                        • 6. 含有相同元素求排列
                                                          • 7. 组合
                                                            • 8. 组合求和
                                                              • 9. 含有相同元素的组合求和
                                                                • 10. 1-9 数字的组合求和
                                                                  • 11. 子集
                                                                    • 12. 含有相同元素求子集
                                                                      • 13. 分割字符串使得每个部分都是回文数
                                                                        • 14. 数独
                                                                          • 15. N 皇后
                                                                        • Leetcode 题解 - 数学
                                                                          • Leetcode 题解 - 数组与矩阵
                                                                            • Leetcode 题解 - 栈和队列
                                                                              • Leetcode 题解 - 树
                                                                                • Leetcode 题解 - 贪心思想
                                                                                  • Leetcode 题解 - 链表

                                                                                    Leetcode 题解 - 搜索

                                                                                    2022年5月21日大约 20 分钟

                                                                                    此页内容
                                                                                    • BFS
                                                                                      • 1. 计算在网格中从原点到特定点的最短路径长度
                                                                                      • 2. 组成整数的最小平方数数量
                                                                                      • 3. 最短单词路径
                                                                                    • DFS
                                                                                      • 1. 查找最大的连通面积
                                                                                      • 2. 矩阵中的连通分量数目
                                                                                      • 3. 好友关系的连通分量数目
                                                                                      • 4. 填充封闭区域
                                                                                      • 5. 能到达的太平洋和大西洋的区域
                                                                                    • Backtracking
                                                                                      • 1. 数字键盘组合
                                                                                      • 2. IP 地址划分
                                                                                      • 3. 在矩阵中寻找字符串
                                                                                      • 4. 输出二叉树中所有从根到叶子的路径
                                                                                      • 5. 排列
                                                                                      • 6. 含有相同元素求排列
                                                                                      • 7. 组合
                                                                                      • 8. 组合求和
                                                                                      • 9. 含有相同元素的组合求和
                                                                                      • 10. 1-9 数字的组合求和
                                                                                      • 11. 子集
                                                                                      • 12. 含有相同元素求子集
                                                                                      • 13. 分割字符串使得每个部分都是回文数
                                                                                      • 14. 数独
                                                                                      • 15. N 皇后

                                                                                    # Leetcode 题解 - 搜索

                                                                                    • Leetcode 题解 - 搜索
                                                                                      • BFS
                                                                                        • 1. 计算在网格中从原点到特定点的最短路径长度
                                                                                        • 2. 组成整数的最小平方数数量
                                                                                        • 3. 最短单词路径
                                                                                      • DFS
                                                                                        • 1. 查找最大的连通面积
                                                                                        • 2. 矩阵中的连通分量数目
                                                                                        • 3. 好友关系的连通分量数目
                                                                                        • 4. 填充封闭区域
                                                                                        • 5. 能到达的太平洋和大西洋的区域
                                                                                      • Backtracking
                                                                                        • 1. 数字键盘组合
                                                                                        • 2. IP 地址划分
                                                                                        • 3. 在矩阵中寻找字符串
                                                                                        • 4. 输出二叉树中所有从根到叶子的路径
                                                                                        • 5. 排列
                                                                                        • 6. 含有相同元素求排列
                                                                                        • 7. 组合
                                                                                        • 8. 组合求和
                                                                                        • 9. 含有相同元素的组合求和
                                                                                        • 10. 1-9 数字的组合求和
                                                                                        • 11. 子集
                                                                                        • 12. 含有相同元素求子集
                                                                                        • 13. 分割字符串使得每个部分都是回文数
                                                                                        • 14. 数独
                                                                                        • 15. N 皇后

                                                                                    深度优先搜索和广度优先搜索广泛运用于树和图中,但是它们的应用远远不止如此。

                                                                                    # BFS

                                                                                    img

                                                                                    广度优先搜索一层一层地进行遍历,每层遍历都是以上一层遍历的结果作为起点,遍历一个距离能访问到的所有节点。需要注意的是,遍历过的节点不能再次被遍历。

                                                                                    第一层:

                                                                                    • 0 -> {6,2,1,5}

                                                                                    第二层:

                                                                                    • 6 -> {4}
                                                                                    • 2 -> {}
                                                                                    • 1 -> {}
                                                                                    • 5 -> {3}

                                                                                    第三层:

                                                                                    • 4 -> {}
                                                                                    • 3 -> {}

                                                                                    每一层遍历的节点都与根节点距离相同。设 di 表示第 i 个节点与根节点的距离,推导出一个结论:对于先遍历的节点 i 与后遍历的节点 j,有 di <= dj。利用这个结论,可以求解最短路径等 最优解 问题:第一次遍历到目的节点,其所经过的路径为最短路径。应该注意的是,使用 BFS 只能求解无权图的最短路径,无权图是指从一个节点到另一个节点的代价都记为 1。

                                                                                    在程序实现 BFS 时需要考虑以下问题:

                                                                                    • 队列:用来存储每一轮遍历得到的节点;
                                                                                    • 标记:对于遍历过的节点,应该将它标记,防止重复遍历。

                                                                                    # 1. 计算在网格中从原点到特定点的最短路径长度

                                                                                    1091. Shortest Path in Binary Matrix(Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    [[1,1,0,1],
                                                                                     [1,0,1,0],
                                                                                     [1,1,1,1],
                                                                                     [1,0,1,1]]
                                                                                    

                                                                                    题目描述:0 表示可以经过某个位置,求解从左上角到右下角的最短路径长度。

                                                                                    public int shortestPathBinaryMatrix(int[][] grids) {
                                                                                            if (grids == null || grids.length == 0 || grids[0].length == 0) {
                                                                                                return -1;
                                                                                            }
                                                                                            int[][] direction = {{1, -1}, {1, 0}, {1, 1}, {0, -1}, {0, 1}, {-1, -1}, {-1, 0}, {-1, 1}};
                                                                                            int m = grids.length, n = grids[0].length;
                                                                                            Queue<Pair<Integer, Integer>> queue = new LinkedList<>();
                                                                                            queue.add(new Pair<>(0, 0));
                                                                                            int pathLength = 0;
                                                                                            while (!queue.isEmpty()) {
                                                                                                int size = queue.size();
                                                                                                pathLength++;
                                                                                                while (size-- > 0) {
                                                                                                    Pair<Integer, Integer> cur = queue.poll();
                                                                                                    int cr = cur.getKey(), cc = cur.getValue();
                                                                                                    if (grids[cr][cc] == 1) {
                                                                                                        continue;
                                                                                                    }
                                                                                                    if (cr == m - 1 && cc == n - 1) {
                                                                                                        return pathLength;
                                                                                                    }
                                                                                                    grids[cr][cc] = 1; // 标记
                                                                                                    for (int[] d : direction) {
                                                                                                        int nr = cr + d[0], nc = cc + d[1];
                                                                                                        if (nr < 0 || nr >= m || nc < 0 || nc >= n) {
                                                                                                            continue;
                                                                                                        }
                                                                                                        queue.add(new Pair<>(nr, nc));
                                                                                                    }
                                                                                                }
                                                                                            }
                                                                                            return -1;
                                                                                        }
                                                                                    

                                                                                    # 2. 组成整数的最小平方数数量

                                                                                    279. Perfect Squares (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
                                                                                    

                                                                                    可以将每个整数看成图中的一个节点,如果两个整数之差为一个平方数,那么这两个整数所在的节点就有一条边。

                                                                                    要求解最小的平方数数量,就是求解从节点 n 到节点 0 的最短路径。

                                                                                    本题也可以用动态规划求解,在之后动态规划部分中会再次出现。

                                                                                    public int numSquares(int n) {
                                                                                        List<Integer> squares = generateSquares(n);
                                                                                        Queue<Integer> queue = new LinkedList<>();
                                                                                        boolean[] marked = new boolean[n + 1];
                                                                                        queue.add(n);
                                                                                        marked[n] = true;
                                                                                        int level = 0;
                                                                                        while (!queue.isEmpty()) {
                                                                                            int size = queue.size();
                                                                                            level++;
                                                                                            while (size-- > 0) {
                                                                                                int cur = queue.poll();
                                                                                                for (int s : squares) {
                                                                                                    int next = cur - s;
                                                                                                    if (next < 0) {
                                                                                                        break;
                                                                                                    }
                                                                                                    if (next == 0) {
                                                                                                        return level;
                                                                                                    }
                                                                                                    if (marked[next]) {
                                                                                                        continue;
                                                                                                    }
                                                                                                    marked[next] = true;
                                                                                                    queue.add(next);
                                                                                                }
                                                                                            }
                                                                                        }
                                                                                        return n;
                                                                                    }
                                                                                    
                                                                                    /**
                                                                                     * 生成小于 n 的平方数序列
                                                                                     * @return 1,4,9,...
                                                                                     */
                                                                                    private List<Integer> generateSquares(int n) {
                                                                                        List<Integer> squares = new ArrayList<>();
                                                                                        int square = 1;
                                                                                        int diff = 3;
                                                                                        while (square <= n) {
                                                                                            squares.add(square);
                                                                                            square += diff;
                                                                                            diff += 2;
                                                                                        }
                                                                                        return squares;
                                                                                    }
                                                                                    

                                                                                    # 3. 最短单词路径

                                                                                    127. Word Ladder (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    Input:
                                                                                    beginWord = "hit",
                                                                                    endWord = "cog",
                                                                                    wordList = ["hot","dot","dog","lot","log","cog"]
                                                                                    
                                                                                    Output: 5
                                                                                    
                                                                                    Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
                                                                                    return its length 5.
                                                                                    
                                                                                    Input:
                                                                                    beginWord = "hit"
                                                                                    endWord = "cog"
                                                                                    wordList = ["hot","dot","dog","lot","log"]
                                                                                    
                                                                                    Output: 0
                                                                                    
                                                                                    Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.
                                                                                    

                                                                                    题目描述:找出一条从 beginWord 到 endWord 的最短路径,每次移动规定为改变一个字符,并且改变之后的字符串必须在 wordList 中。

                                                                                    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
                                                                                        wordList.add(beginWord);
                                                                                        int N = wordList.size();
                                                                                        int start = N - 1;
                                                                                        int end = 0;
                                                                                        while (end < N && !wordList.get(end).equals(endWord)) {
                                                                                            end++;
                                                                                        }
                                                                                        if (end == N) {
                                                                                            return 0;
                                                                                        }
                                                                                        List<Integer>[] graphic = buildGraphic(wordList);
                                                                                        return getShortestPath(graphic, start, end);
                                                                                    }
                                                                                    
                                                                                    private List<Integer>[] buildGraphic(List<String> wordList) {
                                                                                        int N = wordList.size();
                                                                                        List<Integer>[] graphic = new List[N];
                                                                                        for (int i = 0; i < N; i++) {
                                                                                            graphic[i] = new ArrayList<>();
                                                                                            for (int j = 0; j < N; j++) {
                                                                                                if (isConnect(wordList.get(i), wordList.get(j))) {
                                                                                                    graphic[i].add(j);
                                                                                                }
                                                                                            }
                                                                                        }
                                                                                        return graphic;
                                                                                    }
                                                                                    
                                                                                    private boolean isConnect(String s1, String s2) {
                                                                                        int diffCnt = 0;
                                                                                        for (int i = 0; i < s1.length() && diffCnt <= 1; i++) {
                                                                                            if (s1.charAt(i) != s2.charAt(i)) {
                                                                                                diffCnt++;
                                                                                            }
                                                                                        }
                                                                                        return diffCnt == 1;
                                                                                    }
                                                                                    
                                                                                    private int getShortestPath(List<Integer>[] graphic, int start, int end) {
                                                                                        Queue<Integer> queue = new LinkedList<>();
                                                                                        boolean[] marked = new boolean[graphic.length];
                                                                                        queue.add(start);
                                                                                        marked[start] = true;
                                                                                        int path = 1;
                                                                                        while (!queue.isEmpty()) {
                                                                                            int size = queue.size();
                                                                                            path++;
                                                                                            while (size-- > 0) {
                                                                                                int cur = queue.poll();
                                                                                                for (int next : graphic[cur]) {
                                                                                                    if (next == end) {
                                                                                                        return path;
                                                                                                    }
                                                                                                    if (marked[next]) {
                                                                                                        continue;
                                                                                                    }
                                                                                                    marked[next] = true;
                                                                                                    queue.add(next);
                                                                                                }
                                                                                            }
                                                                                        }
                                                                                        return 0;
                                                                                    }
                                                                                    

                                                                                    # DFS

                                                                                    img

                                                                                    广度优先搜索一层一层遍历,每一层得到的所有新节点,要用队列存储起来以备下一层遍历的时候再遍历。

                                                                                    而深度优先搜索在得到一个新节点时立即对新节点进行遍历:从节点 0 出发开始遍历,得到到新节点 6 时,立马对新节点 6 进行遍历,得到新节点 4;如此反复以这种方式遍历新节点,直到没有新节点了,此时返回。返回到根节点 0 的情况是,继续对根节点 0 进行遍历,得到新节点 2,然后继续以上步骤。

                                                                                    从一个节点出发,使用 DFS 对一个图进行遍历时,能够遍历到的节点都是从初始节点可达的,DFS 常用来求解这种 可达性 问题。

                                                                                    在程序实现 DFS 时需要考虑以下问题:

                                                                                    • 栈:用栈来保存当前节点信息,当遍历新节点返回时能够继续遍历当前节点。可以使用递归栈。
                                                                                    • 标记:和 BFS 一样同样需要对已经遍历过的节点进行标记。

                                                                                    # 1. 查找最大的连通面积

                                                                                    695. Max Area of Island (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    [[0,0,1,0,0,0,0,1,0,0,0,0,0],
                                                                                     [0,0,0,0,0,0,0,1,1,1,0,0,0],
                                                                                     [0,1,1,0,1,0,0,0,0,0,0,0,0],
                                                                                     [0,1,0,0,1,1,0,0,1,0,1,0,0],
                                                                                     [0,1,0,0,1,1,0,0,1,1,1,0,0],
                                                                                     [0,0,0,0,0,0,0,0,0,0,1,0,0],
                                                                                     [0,0,0,0,0,0,0,1,1,1,0,0,0],
                                                                                     [0,0,0,0,0,0,0,1,1,0,0,0,0]]
                                                                                    
                                                                                    private int m, n;
                                                                                    private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
                                                                                    
                                                                                    public int maxAreaOfIsland(int[][] grid) {
                                                                                        if (grid == null || grid.length == 0) {
                                                                                            return 0;
                                                                                        }
                                                                                        m = grid.length;
                                                                                        n = grid[0].length;
                                                                                        int maxArea = 0;
                                                                                        for (int i = 0; i < m; i++) {
                                                                                            for (int j = 0; j < n; j++) {
                                                                                                maxArea = Math.max(maxArea, dfs(grid, i, j));
                                                                                            }
                                                                                        }
                                                                                        return maxArea;
                                                                                    }
                                                                                    
                                                                                    private int dfs(int[][] grid, int r, int c) {
                                                                                        if (r < 0 || r >= m || c < 0 || c >= n || grid[r][c] == 0) {
                                                                                            return 0;
                                                                                        }
                                                                                        grid[r][c] = 0;
                                                                                        int area = 1;
                                                                                        for (int[] d : direction) {
                                                                                            area += dfs(grid, r + d[0], c + d[1]);
                                                                                        }
                                                                                        return area;
                                                                                    }
                                                                                    

                                                                                    # 2. 矩阵中的连通分量数目

                                                                                    200. Number of Islands (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    Input:
                                                                                    11000
                                                                                    11000
                                                                                    00100
                                                                                    00011
                                                                                    
                                                                                    Output: 3
                                                                                    

                                                                                    可以将矩阵表示看成一张有向图。

                                                                                    private int m, n;
                                                                                    private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
                                                                                    
                                                                                    public int numIslands(char[][] grid) {
                                                                                        if (grid == null || grid.length == 0) {
                                                                                            return 0;
                                                                                        }
                                                                                        m = grid.length;
                                                                                        n = grid[0].length;
                                                                                        int islandsNum = 0;
                                                                                        for (int i = 0; i < m; i++) {
                                                                                            for (int j = 0; j < n; j++) {
                                                                                                if (grid[i][j] != '0') {
                                                                                                    dfs(grid, i, j);
                                                                                                    islandsNum++;
                                                                                                }
                                                                                            }
                                                                                        }
                                                                                        return islandsNum;
                                                                                    }
                                                                                    
                                                                                    private void dfs(char[][] grid, int i, int j) {
                                                                                        if (i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == '0') {
                                                                                            return;
                                                                                        }
                                                                                        grid[i][j] = '0';
                                                                                        for (int[] d : direction) {
                                                                                            dfs(grid, i + d[0], j + d[1]);
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 3. 好友关系的连通分量数目

                                                                                    547. Friend Circles (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    Input:
                                                                                    [[1,1,0],
                                                                                     [1,1,0],
                                                                                     [0,0,1]]
                                                                                    
                                                                                    Output: 2
                                                                                    
                                                                                    Explanation:The 0th and 1st students are direct friends, so they are in a friend circle.
                                                                                    The 2nd student himself is in a friend circle. So return 2.
                                                                                    

                                                                                    题目描述:好友关系可以看成是一个无向图,例如第 0 个人与第 1 个人是好友,那么 M[0][1] 和 M[1][0] 的值都为 1。

                                                                                    private int n;
                                                                                    
                                                                                    public int findCircleNum(int[][] M) {
                                                                                        n = M.length;
                                                                                        int circleNum = 0;
                                                                                        boolean[] hasVisited = new boolean[n];
                                                                                        for (int i = 0; i < n; i++) {
                                                                                            if (!hasVisited[i]) {
                                                                                                dfs(M, i, hasVisited);
                                                                                                circleNum++;
                                                                                            }
                                                                                        }
                                                                                        return circleNum;
                                                                                    }
                                                                                    
                                                                                    private void dfs(int[][] M, int i, boolean[] hasVisited) {
                                                                                        hasVisited[i] = true;
                                                                                        for (int k = 0; k < n; k++) {
                                                                                            if (M[i][k] == 1 && !hasVisited[k]) {
                                                                                                dfs(M, k, hasVisited);
                                                                                            }
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 4. 填充封闭区域

                                                                                    130. Surrounded Regions (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    For example,
                                                                                    X X X X
                                                                                    X O O X
                                                                                    X X O X
                                                                                    X O X X
                                                                                    
                                                                                    After running your function, the board should be:
                                                                                    X X X X
                                                                                    X X X X
                                                                                    X X X X
                                                                                    X O X X
                                                                                    

                                                                                    题目描述:使被 'X' 包围的 'O' 转换为 'X'。

                                                                                    先填充最外侧,剩下的就是里侧了。

                                                                                    private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
                                                                                    private int m, n;
                                                                                    
                                                                                    public void solve(char[][] board) {
                                                                                        if (board == null || board.length == 0) {
                                                                                            return;
                                                                                        }
                                                                                    
                                                                                        m = board.length;
                                                                                        n = board[0].length;
                                                                                    
                                                                                        for (int i = 0; i < m; i++) {
                                                                                            dfs(board, i, 0);
                                                                                            dfs(board, i, n - 1);
                                                                                        }
                                                                                        for (int i = 0; i < n; i++) {
                                                                                            dfs(board, 0, i);
                                                                                            dfs(board, m - 1, i);
                                                                                        }
                                                                                    
                                                                                        for (int i = 0; i < m; i++) {
                                                                                            for (int j = 0; j < n; j++) {
                                                                                                if (board[i][j] == 'T') {
                                                                                                    board[i][j] = 'O';
                                                                                                } else if (board[i][j] == 'O') {
                                                                                                    board[i][j] = 'X';
                                                                                                }
                                                                                            }
                                                                                        }
                                                                                    }
                                                                                    
                                                                                    private void dfs(char[][] board, int r, int c) {
                                                                                        if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != 'O') {
                                                                                            return;
                                                                                        }
                                                                                        board[r][c] = 'T';
                                                                                        for (int[] d : direction) {
                                                                                            dfs(board, r + d[0], c + d[1]);
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 5. 能到达的太平洋和大西洋的区域

                                                                                    417. Pacific Atlantic Water Flow (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    Given the following 5x5 matrix:
                                                                                    
                                                                                      Pacific ~   ~   ~   ~   ~
                                                                                           ~  1   2   2   3  (5) *
                                                                                           ~  3   2   3  (4) (4) *
                                                                                           ~  2   4  (5)  3   1  *
                                                                                           ~ (6) (7)  1   4   5  *
                                                                                           ~ (5)  1   1   2   4  *
                                                                                              *   *   *   *   * Atlantic
                                                                                    
                                                                                    Return:
                                                                                    [[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).
                                                                                    

                                                                                    左边和上边是太平洋,右边和下边是大西洋,内部的数字代表海拔,海拔高的地方的水能够流到低的地方,求解水能够流到太平洋和大西洋的所有位置。

                                                                                    private int m, n;
                                                                                    private int[][] matrix;
                                                                                    private int[][] direction = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
                                                                                    
                                                                                    public List<List<Integer>> pacificAtlantic(int[][] matrix) {
                                                                                        List<List<Integer>> ret = new ArrayList<>();
                                                                                        if (matrix == null || matrix.length == 0) {
                                                                                            return ret;
                                                                                        }
                                                                                    
                                                                                        m = matrix.length;
                                                                                        n = matrix[0].length;
                                                                                        this.matrix = matrix;
                                                                                        boolean[][] canReachP = new boolean[m][n];
                                                                                        boolean[][] canReachA = new boolean[m][n];
                                                                                    
                                                                                        for (int i = 0; i < m; i++) {
                                                                                            dfs(i, 0, canReachP);
                                                                                            dfs(i, n - 1, canReachA);
                                                                                        }
                                                                                        for (int i = 0; i < n; i++) {
                                                                                            dfs(0, i, canReachP);
                                                                                            dfs(m - 1, i, canReachA);
                                                                                        }
                                                                                    
                                                                                        for (int i = 0; i < m; i++) {
                                                                                            for (int j = 0; j < n; j++) {
                                                                                                if (canReachP[i][j] && canReachA[i][j]) {
                                                                                                    ret.add(Arrays.asList(i, j));
                                                                                                }
                                                                                            }
                                                                                        }
                                                                                    
                                                                                        return ret;
                                                                                    }
                                                                                    
                                                                                    private void dfs(int r, int c, boolean[][] canReach) {
                                                                                        if (canReach[r][c]) {
                                                                                            return;
                                                                                        }
                                                                                        canReach[r][c] = true;
                                                                                        for (int[] d : direction) {
                                                                                            int nextR = d[0] + r;
                                                                                            int nextC = d[1] + c;
                                                                                            if (nextR < 0 || nextR >= m || nextC < 0 || nextC >= n
                                                                                                    || matrix[r][c] > matrix[nextR][nextC]) {
                                                                                    
                                                                                                continue;
                                                                                            }
                                                                                            dfs(nextR, nextC, canReach);
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # Backtracking

                                                                                    Backtracking(回溯)属于 DFS。

                                                                                    • 普通 DFS 主要用在 可达性问题 ,这种问题只需要执行到特点的位置然后返回即可。
                                                                                    • 而 Backtracking 主要用于求解 排列组合 问题,例如有 { 'a','b','c' } 三个字符,求解所有由这三个字符排列得到的字符串,这种问题在执行到特定的位置返回之后还会继续执行求解过程。

                                                                                    因为 Backtracking 不是立即返回,而要继续求解,因此在程序实现时,需要注意对元素的标记问题:

                                                                                    • 在访问一个新元素进入新的递归调用时,需要将新元素标记为已经访问,这样才能在继续递归调用时不用重复访问该元素;
                                                                                    • 但是在递归返回时,需要将元素标记为未访问,因为只需要保证在一个递归链中不同时访问一个元素,可以访问已经访问过但是不在当前递归链中的元素。

                                                                                    # 1. 数字键盘组合

                                                                                    17. Letter Combinations of a Phone Number (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    img

                                                                                    Input:Digit string "23"
                                                                                    Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].
                                                                                    
                                                                                    private static final String[] KEYS = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
                                                                                    
                                                                                    public List<String> letterCombinations(String digits) {
                                                                                        List<String> combinations = new ArrayList<>();
                                                                                        if (digits == null || digits.length() == 0) {
                                                                                            return combinations;
                                                                                        }
                                                                                        doCombination(new StringBuilder(), combinations, digits);
                                                                                        return combinations;
                                                                                    }
                                                                                    
                                                                                    private void doCombination(StringBuilder prefix, List<String> combinations, final String digits) {
                                                                                        if (prefix.length() == digits.length()) {
                                                                                            combinations.add(prefix.toString());
                                                                                            return;
                                                                                        }
                                                                                        int curDigits = digits.charAt(prefix.length()) - '0';
                                                                                        String letters = KEYS[curDigits];
                                                                                        for (char c : letters.toCharArray()) {
                                                                                            prefix.append(c);                         // 添加
                                                                                            doCombination(prefix, combinations, digits);
                                                                                            prefix.deleteCharAt(prefix.length() - 1); // 删除
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 2. IP 地址划分

                                                                                    93. Restore IP Addresses(Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    Given "25525511135",
                                                                                    return ["255.255.11.135", "255.255.111.35"].
                                                                                    
                                                                                    public List<String> restoreIpAddresses(String s) {
                                                                                        List<String> addresses = new ArrayList<>();
                                                                                        StringBuilder tempAddress = new StringBuilder();
                                                                                        doRestore(0, tempAddress, addresses, s);
                                                                                        return addresses;
                                                                                    }
                                                                                    
                                                                                    private void doRestore(int k, StringBuilder tempAddress, List<String> addresses, String s) {
                                                                                        if (k == 4 || s.length() == 0) {
                                                                                            if (k == 4 && s.length() == 0) {
                                                                                                addresses.add(tempAddress.toString());
                                                                                            }
                                                                                            return;
                                                                                        }
                                                                                        for (int i = 0; i < s.length() && i <= 2; i++) {
                                                                                            if (i != 0 && s.charAt(0) == '0') {
                                                                                                break;
                                                                                            }
                                                                                            String part = s.substring(0, i + 1);
                                                                                            if (Integer.valueOf(part) <= 255) {
                                                                                                if (tempAddress.length() != 0) {
                                                                                                    part = "." + part;
                                                                                                }
                                                                                                tempAddress.append(part);
                                                                                                doRestore(k + 1, tempAddress, addresses, s.substring(i + 1));
                                                                                                tempAddress.delete(tempAddress.length() - part.length(), tempAddress.length());
                                                                                            }
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 3. 在矩阵中寻找字符串

                                                                                    79. Word Search (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    For example,
                                                                                    Given board =
                                                                                    [
                                                                                      ['A','B','C','E'],
                                                                                      ['S','F','C','S'],
                                                                                      ['A','D','E','E']
                                                                                    ]
                                                                                    word = "ABCCED", -> returns true,
                                                                                    word = "SEE", -> returns true,
                                                                                    word = "ABCB", -> returns false.
                                                                                    
                                                                                    private final static int[][] direction = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
                                                                                    private int m;
                                                                                    private int n;
                                                                                    
                                                                                    public boolean exist(char[][] board, String word) {
                                                                                        if (word == null || word.length() == 0) {
                                                                                            return true;
                                                                                        }
                                                                                        if (board == null || board.length == 0 || board[0].length == 0) {
                                                                                            return false;
                                                                                        }
                                                                                    
                                                                                        m = board.length;
                                                                                        n = board[0].length;
                                                                                        boolean[][] hasVisited = new boolean[m][n];
                                                                                    
                                                                                        for (int r = 0; r < m; r++) {
                                                                                            for (int c = 0; c < n; c++) {
                                                                                                if (backtracking(0, r, c, hasVisited, board, word)) {
                                                                                                    return true;
                                                                                                }
                                                                                            }
                                                                                        }
                                                                                    
                                                                                        return false;
                                                                                    }
                                                                                    
                                                                                    private boolean backtracking(int curLen, int r, int c, boolean[][] visited, final char[][] board, final String word) {
                                                                                        if (curLen == word.length()) {
                                                                                            return true;
                                                                                        }
                                                                                        if (r < 0 || r >= m || c < 0 || c >= n
                                                                                                || board[r][c] != word.charAt(curLen) || visited[r][c]) {
                                                                                    
                                                                                            return false;
                                                                                        }
                                                                                    
                                                                                        visited[r][c] = true;
                                                                                    
                                                                                        for (int[] d : direction) {
                                                                                            if (backtracking(curLen + 1, r + d[0], c + d[1], visited, board, word)) {
                                                                                                return true;
                                                                                            }
                                                                                        }
                                                                                    
                                                                                        visited[r][c] = false;
                                                                                    
                                                                                        return false;
                                                                                    }
                                                                                    

                                                                                    # 4. 输出二叉树中所有从根到叶子的路径

                                                                                    257. Binary Tree Paths (Easy)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                      1
                                                                                     /  \
                                                                                    2    3
                                                                                     \
                                                                                      5
                                                                                    
                                                                                    ["1->2->5", "1->3"]
                                                                                    
                                                                                    
                                                                                    public List<String> binaryTreePaths(TreeNode root) {
                                                                                        List<String> paths = new ArrayList<>();
                                                                                        if (root == null) {
                                                                                            return paths;
                                                                                        }
                                                                                        List<Integer> values = new ArrayList<>();
                                                                                        backtracking(root, values, paths);
                                                                                        return paths;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(TreeNode node, List<Integer> values, List<String> paths) {
                                                                                        if (node == null) {
                                                                                            return;
                                                                                        }
                                                                                        values.add(node.val);
                                                                                        if (isLeaf(node)) {
                                                                                            paths.add(buildPath(values));
                                                                                        } else {
                                                                                            backtracking(node.left, values, paths);
                                                                                            backtracking(node.right, values, paths);
                                                                                        }
                                                                                        values.remove(values.size() - 1);
                                                                                    }
                                                                                    
                                                                                    private boolean isLeaf(TreeNode node) {
                                                                                        return node.left == null && node.right == null;
                                                                                    }
                                                                                    
                                                                                    private String buildPath(List<Integer> values) {
                                                                                        StringBuilder str = new StringBuilder();
                                                                                        for (int i = 0; i < values.size(); i++) {
                                                                                            str.append(values.get(i));
                                                                                            if (i != values.size() - 1) {
                                                                                                str.append("->");
                                                                                            }
                                                                                        }
                                                                                        return str.toString();
                                                                                    }
                                                                                    

                                                                                    # 5. 排列

                                                                                    46. Permutations (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    [1,2,3] have the following permutations:
                                                                                    [
                                                                                      [1,2,3],
                                                                                      [1,3,2],
                                                                                      [2,1,3],
                                                                                      [2,3,1],
                                                                                      [3,1,2],
                                                                                      [3,2,1]
                                                                                    ]
                                                                                    
                                                                                    public List<List<Integer>> permute(int[] nums) {
                                                                                        List<List<Integer>> permutes = new ArrayList<>();
                                                                                        List<Integer> permuteList = new ArrayList<>();
                                                                                        boolean[] hasVisited = new boolean[nums.length];
                                                                                        backtracking(permuteList, permutes, hasVisited, nums);
                                                                                        return permutes;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(List<Integer> permuteList, List<List<Integer>> permutes, boolean[] visited, final int[] nums) {
                                                                                        if (permuteList.size() == nums.length) {
                                                                                            permutes.add(new ArrayList<>(permuteList)); // 重新构造一个 List
                                                                                            return;
                                                                                        }
                                                                                        for (int i = 0; i < visited.length; i++) {
                                                                                            if (visited[i]) {
                                                                                                continue;
                                                                                            }
                                                                                            visited[i] = true;
                                                                                            permuteList.add(nums[i]);
                                                                                            backtracking(permuteList, permutes, visited, nums);
                                                                                            permuteList.remove(permuteList.size() - 1);
                                                                                            visited[i] = false;
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 6. 含有相同元素求排列

                                                                                    47. Permutations II (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    [1,1,2] have the following unique permutations:
                                                                                    [[1,1,2], [1,2,1], [2,1,1]]
                                                                                    

                                                                                    数组元素可能含有相同的元素,进行排列时就有可能出现重复的排列,要求重复的排列只返回一个。

                                                                                    在实现上,和 Permutations 不同的是要先排序,然后在添加一个元素时,判断这个元素是否等于前一个元素,如果等于,并且前一个元素还未访问,那么就跳过这个元素。

                                                                                    public List<List<Integer>> permuteUnique(int[] nums) {
                                                                                        List<List<Integer>> permutes = new ArrayList<>();
                                                                                        List<Integer> permuteList = new ArrayList<>();
                                                                                        Arrays.sort(nums);  // 排序
                                                                                        boolean[] hasVisited = new boolean[nums.length];
                                                                                        backtracking(permuteList, permutes, hasVisited, nums);
                                                                                        return permutes;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(List<Integer> permuteList, List<List<Integer>> permutes, boolean[] visited, final int[] nums) {
                                                                                        if (permuteList.size() == nums.length) {
                                                                                            permutes.add(new ArrayList<>(permuteList));
                                                                                            return;
                                                                                        }
                                                                                    
                                                                                        for (int i = 0; i < visited.length; i++) {
                                                                                            if (i != 0 && nums[i] == nums[i - 1] && !visited[i - 1]) {
                                                                                                continue;  // 防止重复
                                                                                            }
                                                                                            if (visited[i]){
                                                                                                continue;
                                                                                            }
                                                                                            visited[i] = true;
                                                                                            permuteList.add(nums[i]);
                                                                                            backtracking(permuteList, permutes, visited, nums);
                                                                                            permuteList.remove(permuteList.size() - 1);
                                                                                            visited[i] = false;
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 7. 组合

                                                                                    77. Combinations (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    If n = 4 and k = 2, a solution is:
                                                                                    [
                                                                                      [2,4],
                                                                                      [3,4],
                                                                                      [2,3],
                                                                                      [1,2],
                                                                                      [1,3],
                                                                                      [1,4],
                                                                                    ]
                                                                                    
                                                                                    public List<List<Integer>> combine(int n, int k) {
                                                                                        List<List<Integer>> combinations = new ArrayList<>();
                                                                                        List<Integer> combineList = new ArrayList<>();
                                                                                        backtracking(combineList, combinations, 1, k, n);
                                                                                        return combinations;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(List<Integer> combineList, List<List<Integer>> combinations, int start, int k, final int n) {
                                                                                        if (k == 0) {
                                                                                            combinations.add(new ArrayList<>(combineList));
                                                                                            return;
                                                                                        }
                                                                                        for (int i = start; i <= n - k + 1; i++) {  // 剪枝
                                                                                            combineList.add(i);
                                                                                            backtracking(combineList, combinations, i + 1, k - 1, n);
                                                                                            combineList.remove(combineList.size() - 1);
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 8. 组合求和

                                                                                    39. Combination Sum (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    given candidate set [2, 3, 6, 7] and target 7,
                                                                                    A solution set is:
                                                                                    [[7],[2, 2, 3]]
                                                                                    
                                                                                    public List<List<Integer>> combinationSum(int[] candidates, int target) {
                                                                                        List<List<Integer>> combinations = new ArrayList<>();
                                                                                        backtracking(new ArrayList<>(), combinations, 0, target, candidates);
                                                                                        return combinations;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(List<Integer> tempCombination, List<List<Integer>> combinations,
                                                                                                              int start, int target, final int[] candidates) {
                                                                                    
                                                                                        if (target == 0) {
                                                                                            combinations.add(new ArrayList<>(tempCombination));
                                                                                            return;
                                                                                        }
                                                                                        for (int i = start; i < candidates.length; i++) {
                                                                                            if (candidates[i] <= target) {
                                                                                                tempCombination.add(candidates[i]);
                                                                                                backtracking(tempCombination, combinations, i, target - candidates[i], candidates);
                                                                                                tempCombination.remove(tempCombination.size() - 1);
                                                                                            }
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 9. 含有相同元素的组合求和

                                                                                    40. Combination Sum II (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
                                                                                    A solution set is:
                                                                                    [
                                                                                      [1, 7],
                                                                                      [1, 2, 5],
                                                                                      [2, 6],
                                                                                      [1, 1, 6]
                                                                                    ]
                                                                                    
                                                                                    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
                                                                                        List<List<Integer>> combinations = new ArrayList<>();
                                                                                        Arrays.sort(candidates);
                                                                                        backtracking(new ArrayList<>(), combinations, new boolean[candidates.length], 0, target, candidates);
                                                                                        return combinations;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(List<Integer> tempCombination, List<List<Integer>> combinations,
                                                                                                              boolean[] hasVisited, int start, int target, final int[] candidates) {
                                                                                    
                                                                                        if (target == 0) {
                                                                                            combinations.add(new ArrayList<>(tempCombination));
                                                                                            return;
                                                                                        }
                                                                                        for (int i = start; i < candidates.length; i++) {
                                                                                            if (i != 0 && candidates[i] == candidates[i - 1] && !hasVisited[i - 1]) {
                                                                                                continue;
                                                                                            }
                                                                                            if (candidates[i] <= target) {
                                                                                                tempCombination.add(candidates[i]);
                                                                                                hasVisited[i] = true;
                                                                                                backtracking(tempCombination, combinations, hasVisited, i + 1, target - candidates[i], candidates);
                                                                                                hasVisited[i] = false;
                                                                                                tempCombination.remove(tempCombination.size() - 1);
                                                                                            }
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 10. 1-9 数字的组合求和

                                                                                    216. Combination Sum III (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    Input: k = 3, n = 9
                                                                                    
                                                                                    Output:
                                                                                    
                                                                                    [[1,2,6], [1,3,5], [2,3,4]]
                                                                                    

                                                                                    从 1-9 数字中选出 k 个数不重复的数,使得它们的和为 n。

                                                                                    public List<List<Integer>> combinationSum3(int k, int n) {
                                                                                        List<List<Integer>> combinations = new ArrayList<>();
                                                                                        List<Integer> path = new ArrayList<>();
                                                                                        backtracking(k, n, 1, path, combinations);
                                                                                        return combinations;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(int k, int n, int start,
                                                                                                              List<Integer> tempCombination, List<List<Integer>> combinations) {
                                                                                    
                                                                                        if (k == 0 && n == 0) {
                                                                                            combinations.add(new ArrayList<>(tempCombination));
                                                                                            return;
                                                                                        }
                                                                                        if (k == 0 || n == 0) {
                                                                                            return;
                                                                                        }
                                                                                        for (int i = start; i <= 9; i++) {
                                                                                            tempCombination.add(i);
                                                                                            backtracking(k - 1, n - i, i + 1, tempCombination, combinations);
                                                                                            tempCombination.remove(tempCombination.size() - 1);
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 11. 子集

                                                                                    78. Subsets (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    找出集合的所有子集,子集不能重复,[1, 2] 和 [2, 1] 这种子集算重复

                                                                                    public List<List<Integer>> subsets(int[] nums) {
                                                                                        List<List<Integer>> subsets = new ArrayList<>();
                                                                                        List<Integer> tempSubset = new ArrayList<>();
                                                                                        for (int size = 0; size <= nums.length; size++) {
                                                                                            backtracking(0, tempSubset, subsets, size, nums); // 不同的子集大小
                                                                                        }
                                                                                        return subsets;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(int start, List<Integer> tempSubset, List<List<Integer>> subsets,
                                                                                                              final int size, final int[] nums) {
                                                                                    
                                                                                        if (tempSubset.size() == size) {
                                                                                            subsets.add(new ArrayList<>(tempSubset));
                                                                                            return;
                                                                                        }
                                                                                        for (int i = start; i < nums.length; i++) {
                                                                                            tempSubset.add(nums[i]);
                                                                                            backtracking(i + 1, tempSubset, subsets, size, nums);
                                                                                            tempSubset.remove(tempSubset.size() - 1);
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 12. 含有相同元素求子集

                                                                                    90. Subsets II (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    For example,
                                                                                    If nums = [1,2,2], a solution is:
                                                                                    
                                                                                    [
                                                                                      [2],
                                                                                      [1],
                                                                                      [1,2,2],
                                                                                      [2,2],
                                                                                      [1,2],
                                                                                      []
                                                                                    ]
                                                                                    
                                                                                    public List<List<Integer>> subsetsWithDup(int[] nums) {
                                                                                        Arrays.sort(nums);
                                                                                        List<List<Integer>> subsets = new ArrayList<>();
                                                                                        List<Integer> tempSubset = new ArrayList<>();
                                                                                        boolean[] hasVisited = new boolean[nums.length];
                                                                                        for (int size = 0; size <= nums.length; size++) {
                                                                                            backtracking(0, tempSubset, subsets, hasVisited, size, nums); // 不同的子集大小
                                                                                        }
                                                                                        return subsets;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(int start, List<Integer> tempSubset, List<List<Integer>> subsets, boolean[] hasVisited,
                                                                                                              final int size, final int[] nums) {
                                                                                    
                                                                                        if (tempSubset.size() == size) {
                                                                                            subsets.add(new ArrayList<>(tempSubset));
                                                                                            return;
                                                                                        }
                                                                                        for (int i = start; i < nums.length; i++) {
                                                                                            if (i != 0 && nums[i] == nums[i - 1] && !hasVisited[i - 1]) {
                                                                                                continue;
                                                                                            }
                                                                                            tempSubset.add(nums[i]);
                                                                                            hasVisited[i] = true;
                                                                                            backtracking(i + 1, tempSubset, subsets, hasVisited, size, nums);
                                                                                            hasVisited[i] = false;
                                                                                            tempSubset.remove(tempSubset.size() - 1);
                                                                                        }
                                                                                    }
                                                                                    

                                                                                    # 13. 分割字符串使得每个部分都是回文数

                                                                                    131. Palindrome Partitioning (Medium)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    For example, given s = "aab",
                                                                                    Return
                                                                                    
                                                                                    [
                                                                                      ["aa","b"],
                                                                                      ["a","a","b"]
                                                                                    ]
                                                                                    
                                                                                    public List<List<String>> partition(String s) {
                                                                                        List<List<String>> partitions = new ArrayList<>();
                                                                                        List<String> tempPartition = new ArrayList<>();
                                                                                        doPartition(s, partitions, tempPartition);
                                                                                        return partitions;
                                                                                    }
                                                                                    
                                                                                    private void doPartition(String s, List<List<String>> partitions, List<String> tempPartition) {
                                                                                        if (s.length() == 0) {
                                                                                            partitions.add(new ArrayList<>(tempPartition));
                                                                                            return;
                                                                                        }
                                                                                        for (int i = 0; i < s.length(); i++) {
                                                                                            if (isPalindrome(s, 0, i)) {
                                                                                                tempPartition.add(s.substring(0, i + 1));
                                                                                                doPartition(s.substring(i + 1), partitions, tempPartition);
                                                                                                tempPartition.remove(tempPartition.size() - 1);
                                                                                            }
                                                                                        }
                                                                                    }
                                                                                    
                                                                                    private boolean isPalindrome(String s, int begin, int end) {
                                                                                        while (begin < end) {
                                                                                            if (s.charAt(begin++) != s.charAt(end--)) {
                                                                                                return false;
                                                                                            }
                                                                                        }
                                                                                        return true;
                                                                                    }
                                                                                    

                                                                                    # 14. 数独

                                                                                    37. Sudoku Solver (Hard)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    img

                                                                                    private boolean[][] rowsUsed = new boolean[9][10];
                                                                                    private boolean[][] colsUsed = new boolean[9][10];
                                                                                    private boolean[][] cubesUsed = new boolean[9][10];
                                                                                    private char[][] board;
                                                                                    
                                                                                    public void solveSudoku(char[][] board) {
                                                                                        this.board = board;
                                                                                        for (int i = 0; i < 9; i++)
                                                                                            for (int j = 0; j < 9; j++) {
                                                                                                if (board[i][j] == '.') {
                                                                                                    continue;
                                                                                                }
                                                                                                int num = board[i][j] - '0';
                                                                                                rowsUsed[i][num] = true;
                                                                                                colsUsed[j][num] = true;
                                                                                                cubesUsed[cubeNum(i, j)][num] = true;
                                                                                            }
                                                                                            backtracking(0, 0);
                                                                                    }
                                                                                    
                                                                                    private boolean backtracking(int row, int col) {
                                                                                        while (row < 9 && board[row][col] != '.') {
                                                                                            row = col == 8 ? row + 1 : row;
                                                                                            col = col == 8 ? 0 : col + 1;
                                                                                        }
                                                                                        if (row == 9) {
                                                                                            return true;
                                                                                        }
                                                                                        for (int num = 1; num <= 9; num++) {
                                                                                            if (rowsUsed[row][num] || colsUsed[col][num] || cubesUsed[cubeNum(row, col)][num]) {
                                                                                                continue;
                                                                                            }
                                                                                            rowsUsed[row][num] = colsUsed[col][num] = cubesUsed[cubeNum(row, col)][num] = true;
                                                                                            board[row][col] = (char) (num + '0');
                                                                                            if (backtracking(row, col)) {
                                                                                                return true;
                                                                                            }
                                                                                            board[row][col] = '.';
                                                                                            rowsUsed[row][num] = colsUsed[col][num] = cubesUsed[cubeNum(row, col)][num] = false;
                                                                                        }
                                                                                        return false;
                                                                                    }
                                                                                    
                                                                                    private int cubeNum(int i, int j) {
                                                                                        int r = i / 3;
                                                                                        int c = j / 3;
                                                                                        return r * 3 + c;
                                                                                    }
                                                                                    

                                                                                    # 15. N 皇后

                                                                                    51. N-Queens (Hard)

                                                                                    Leetcodeopen in new window / 力扣open in new window

                                                                                    img

                                                                                    在 n*n 的矩阵中摆放 n 个皇后,并且每个皇后不能在同一行,同一列,同一对角线上,求所有的 n 皇后的解。

                                                                                    一行一行地摆放,在确定一行中的那个皇后应该摆在哪一列时,需要用三个标记数组来确定某一列是否合法,这三个标记数组分别为:列标记数组、45 度对角线标记数组和 135 度对角线标记数组。

                                                                                    45 度对角线标记数组的长度为 2 * n - 1,通过下图可以明确 (r, c) 的位置所在的数组下标为 r + c。

                                                                                    ![img](https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/9c422923-1447-4a3b-a4e1-97e663738187.jpg" width="300px">

                                                                                    135 度对角线标记数组的长度也是 2 * n - 1,(r, c) 的位置所在的数组下标为 n - 1 - (r - c)。

                                                                                    ![img](https://cs-notes-1256109796.cos.ap-guangzhou.myqcloud.com/7a85e285-e152-4116-b6dc-3fab27ba9437.jpg" width="300px">

                                                                                    private List<List<String>> solutions;
                                                                                    private char[][] nQueens;
                                                                                    private boolean[] colUsed;
                                                                                    private boolean[] diagonals45Used;
                                                                                    private boolean[] diagonals135Used;
                                                                                    private int n;
                                                                                    
                                                                                    public List<List<String>> solveNQueens(int n) {
                                                                                        solutions = new ArrayList<>();
                                                                                        nQueens = new char[n][n];
                                                                                        for (int i = 0; i < n; i++) {
                                                                                            Arrays.fill(nQueens[i], '.');
                                                                                        }
                                                                                        colUsed = new boolean[n];
                                                                                        diagonals45Used = new boolean[2 * n - 1];
                                                                                        diagonals135Used = new boolean[2 * n - 1];
                                                                                        this.n = n;
                                                                                        backtracking(0);
                                                                                        return solutions;
                                                                                    }
                                                                                    
                                                                                    private void backtracking(int row) {
                                                                                        if (row == n) {
                                                                                            List<String> list = new ArrayList<>();
                                                                                            for (char[] chars : nQueens) {
                                                                                                list.add(new String(chars));
                                                                                            }
                                                                                            solutions.add(list);
                                                                                            return;
                                                                                        }
                                                                                    
                                                                                        for (int col = 0; col < n; col++) {
                                                                                            int diagonals45Idx = row + col;
                                                                                            int diagonals135Idx = n - 1 - (row - col);
                                                                                            if (colUsed[col] || diagonals45Used[diagonals45Idx] || diagonals135Used[diagonals135Idx]) {
                                                                                                continue;
                                                                                            }
                                                                                            nQueens[row][col] = 'Q';
                                                                                            colUsed[col] = diagonals45Used[diagonals45Idx] = diagonals135Used[diagonals135Idx] = true;
                                                                                            backtracking(row + 1);
                                                                                            colUsed[col] = diagonals45Used[diagonals45Idx] = diagonals135Used[diagonals135Idx] = false;
                                                                                            nQueens[row][col] = '.';
                                                                                        }
                                                                                    }
                                                                                    
                                                                                    编辑此页open in new window
                                                                                    上次编辑于: 2022/5/21 13:08:59
                                                                                    贡献者: yzqdev
                                                                                    上一页
                                                                                    Leetcode 题解 - 排序
                                                                                    下一页
                                                                                    Leetcode 题解 - 数学
                                                                                    powered by vuepress-theme-home