Skip to content
百科百科
操作系统
设计模式
算法
题解
java
leetcode
  • leetcode
    • /leetcode/Leetcode 题解.md
      • Leetcode 题解
        • Leetcode 题解 - 二分查找
          • 1. 求开方
            • 2. 大于给定元素的最小元素
              • 3. 有序数组的 Single Element
                • 4. 第一个错误的版本
                  • 5. 旋转数组的最小数字
                    • 6. 查找区间
                    • Leetcode 题解 - 位运算
                      • Leetcode 题解 - 分治
                        • Leetcode 题解 - 动态规划
                          • Leetcode 题解 - 双指针
                            • Leetcode 题解 - 哈希表
                              • Leetcode 题解 - 图
                                • Leetcode 题解 - 字符串
                                  • Leetcode 题解 - 排序
                                    • Leetcode 题解 - 搜索
                                      • Leetcode 题解 - 数学
                                        • Leetcode 题解 - 数组与矩阵
                                          • Leetcode 题解 - 栈和队列
                                            • Leetcode 题解 - 树
                                              • Leetcode 题解 - 贪心思想
                                                • Leetcode 题解 - 链表

                                                  Leetcode 题解 - 二分查找

                                                  2022年5月21日大约 7 分钟

                                                  此页内容
                                                  • 1. 求开方
                                                  • 2. 大于给定元素的最小元素
                                                  • 3. 有序数组的 Single Element
                                                  • 4. 第一个错误的版本
                                                  • 5. 旋转数组的最小数字
                                                  • 6. 查找区间

                                                  # Leetcode 题解 - 二分查找

                                                  • Leetcode 题解 - 二分查找
                                                    • 1. 求开方
                                                    • 2. 大于给定元素的最小元素
                                                    • 3. 有序数组的 Single Element
                                                    • 4. 第一个错误的版本
                                                    • 5. 旋转数组的最小数字
                                                    • 6. 查找区间

                                                  正常实现

                                                  Input : [1,2,3,4,5]
                                                  key : 3
                                                  return the index : 2
                                                  
                                                  public int binarySearch(int[] nums, int key) {
                                                      int l = 0, h = nums.length - 1;
                                                      while (l <= h) {
                                                          int m = l + (h - l) / 2;
                                                          if (nums[m] == key) {
                                                              return m;
                                                          } else if (nums[m] > key) {
                                                              h = m - 1;
                                                          } else {
                                                              l = m + 1;
                                                          }
                                                      }
                                                      return -1;
                                                  }
                                                  

                                                  时间复杂度

                                                  二分查找也称为折半查找,每次都能将查找区间减半,这种折半特性的算法时间复杂度为 O(logN)。

                                                  m 计算

                                                  有两种计算中值 m 的方式:

                                                  • m = (l + h) / 2
                                                  • m = l + (h - l) / 2

                                                  l + h 可能出现加法溢出,也就是说加法的结果大于整型能够表示的范围。但是 l 和 h 都为正数,因此 h - l 不会出现加法溢出问题。所以,最好使用第二种计算法方法。

                                                  未成功查找的返回值

                                                  循环退出时如果仍然没有查找到 key,那么表示查找失败。可以有两种返回值:

                                                  • -1:以一个错误码表示没有查找到 key
                                                  • l:将 key 插入到 nums 中的正确位置

                                                  变种

                                                  二分查找可以有很多变种,实现变种要注意边界值的判断。例如在一个有重复元素的数组中查找 key 的最左位置的实现如下:

                                                  public int binarySearch(int[] nums, int key) {
                                                      int l = 0, h = nums.length;
                                                      while (l < h) {
                                                          int m = l + (h - l) / 2;
                                                          if (nums[m] >= key) {
                                                              h = m;
                                                          } else {
                                                              l = m + 1;
                                                          }
                                                      }
                                                      return l;
                                                  }
                                                  

                                                  该实现和正常实现有以下不同:

                                                  • h 的赋值表达式为 h = m
                                                  • 循环条件为 l < h
                                                  • 最后返回 l 而不是 -1

                                                  在 nums[m] >= key 的情况下,可以推导出最左 key 位于 [l, m] 区间中,这是一个闭区间。h 的赋值表达式为 h = m,因为 m 位置也可能是解。

                                                  在 h 的赋值表达式为 h = m 的情况下,如果循环条件为 l <= h,那么会出现循环无法退出的情况,因此循环条件只能是 l < h。以下演示了循环条件为 l <= h 时循环无法退出的情况:

                                                  nums = {0, 1, 2}, key = 1
                                                  l   m   h
                                                  0   1   2  nums[m] >= key
                                                  0   0   1  nums[m] < key
                                                  1   1   1  nums[m] >= key
                                                  1   1   1  nums[m] >= key
                                                  ...
                                                  

                                                  当循环体退出时,不表示没有查找到 key,因此最后返回的结果不应该为 -1。为了验证有没有查找到,需要在调用端判断一下返回位置上的值和 key 是否相等。

                                                  # 1. 求开方

                                                  69. Sqrt(x) (Easy)

                                                  Leetcodeopen in new window / 力扣open in new window

                                                  Input: 4
                                                  Output: 2
                                                  
                                                  Input: 8
                                                  Output: 2
                                                  Explanation: The square root of 8 is 2.82842..., and since we want to return an integer, the decimal part will be truncated.
                                                  

                                                  一个数 x 的开方 sqrt 一定在 0 ~ x 之间,并且满足 sqrt == x / sqrt。可以利用二分查找在 0 ~ x 之间查找 sqrt。

                                                  对于 x = 8,它的开方是 2.82842...,最后应该返回 2 而不是 3。在循环条件为 l <= h 并且循环退出时,h 总是比 l 小 1,也就是说 h = 2,l = 3,因此最后的返回值应该为 h 而不是 l。

                                                  public int mySqrt(int x) {
                                                      if (x <= 1) {
                                                          return x;
                                                      }
                                                      int l = 1, h = x;
                                                      while (l <= h) {
                                                          int mid = l + (h - l) / 2;
                                                          int sqrt = x / mid;
                                                          if (sqrt == mid) {
                                                              return mid;
                                                          } else if (mid > sqrt) {
                                                              h = mid - 1;
                                                          } else {
                                                              l = mid + 1;
                                                          }
                                                      }
                                                      return h;
                                                  }
                                                  

                                                  # 2. 大于给定元素的最小元素

                                                  744. Find Smallest Letter Greater Than Target (Easy)

                                                  Leetcodeopen in new window / 力扣open in new window

                                                  Input:
                                                  letters = ["c", "f", "j"]
                                                  target = "d"
                                                  Output: "f"
                                                  
                                                  Input:
                                                  letters = ["c", "f", "j"]
                                                  target = "k"
                                                  Output: "c"
                                                  

                                                  题目描述:给定一个有序的字符数组 letters 和一个字符 target,要求找出 letters 中大于 target 的最小字符,如果找不到就返回第 1 个字符。

                                                  public char nextGreatestLetter(char[] letters, char target) {
                                                      int n = letters.length;
                                                      int l = 0, h = n - 1;
                                                      while (l <= h) {
                                                          int m = l + (h - l) / 2;
                                                          if (letters[m] <= target) {
                                                              l = m + 1;
                                                          } else {
                                                              h = m - 1;
                                                          }
                                                      }
                                                      return l < n ? letters[l] : letters[0];
                                                  }
                                                  

                                                  # 3. 有序数组的 Single Element

                                                  540. Single Element in a Sorted Array (Medium)

                                                  Leetcodeopen in new window / 力扣open in new window

                                                  Input: [1, 1, 2, 3, 3, 4, 4, 8, 8]
                                                  Output: 2
                                                  

                                                  题目描述:一个有序数组只有一个数不出现两次,找出这个数。

                                                  要求以 O(logN) 时间复杂度进行求解,因此不能遍历数组并进行异或操作来求解,这么做的时间复杂度为 O(N)。

                                                  令 index 为 Single Element 在数组中的位置。在 index 之后,数组中原来存在的成对状态被改变。如果 m 为偶数,并且 m + 1 < index,那么 nums[m] == nums[m + 1];m + 1 >= index,那么 nums[m] != nums[m + 1]。

                                                  从上面的规律可以知道,如果 nums[m] == nums[m + 1],那么 index 所在的数组位置为 [m + 2, h],此时令 l = m + 2;如果 nums[m] != nums[m + 1],那么 index 所在的数组位置为 [l, m],此时令 h = m。

                                                  因为 h 的赋值表达式为 h = m,那么循环条件也就只能使用 l < h 这种形式。

                                                  public int singleNonDuplicate(int[] nums) {
                                                      int l = 0, h = nums.length - 1;
                                                      while (l < h) {
                                                          int m = l + (h - l) / 2;
                                                          if (m % 2 == 1) {
                                                              m--;   // 保证 l/h/m 都在偶数位,使得查找区间大小一直都是奇数
                                                          }
                                                          if (nums[m] == nums[m + 1]) {
                                                              l = m + 2;
                                                          } else {
                                                              h = m;
                                                          }
                                                      }
                                                      return nums[l];
                                                  }
                                                  

                                                  # 4. 第一个错误的版本

                                                  278. First Bad Version (Easy)

                                                  Leetcodeopen in new window / 力扣open in new window

                                                  题目描述:给定一个元素 n 代表有 [1, 2, ..., n] 版本,在第 x 位置开始出现错误版本,导致后面的版本都错误。可以调用 isBadVersion(int x) 知道某个版本是否错误,要求找到第一个错误的版本。

                                                  如果第 m 个版本出错,则表示第一个错误的版本在 [l, m] 之间,令 h = m;否则第一个错误的版本在 [m + 1, h] 之间,令 l = m + 1。

                                                  因为 h 的赋值表达式为 h = m,因此循环条件为 l < h。

                                                  public int firstBadVersion(int n) {
                                                      int l = 1, h = n;
                                                      while (l < h) {
                                                          int mid = l + (h - l) / 2;
                                                          if (isBadVersion(mid)) {
                                                              h = mid;
                                                          } else {
                                                              l = mid + 1;
                                                          }
                                                      }
                                                      return l;
                                                  }
                                                  

                                                  # 5. 旋转数组的最小数字

                                                  153. Find Minimum in Rotated Sorted Array (Medium)

                                                  Leetcodeopen in new window / 力扣open in new window

                                                  Input: [3,4,5,1,2],
                                                  Output: 1
                                                  
                                                  public int findMin(int[] nums) {
                                                      int l = 0, h = nums.length - 1;
                                                      while (l < h) {
                                                          int m = l + (h - l) / 2;
                                                          if (nums[m] <= nums[h]) {
                                                              h = m;
                                                          } else {
                                                              l = m + 1;
                                                          }
                                                      }
                                                      return nums[l];
                                                  }
                                                  

                                                  # 6. 查找区间

                                                  34. Find First and Last Position of Element in Sorted Array

                                                  Leetcodeopen in new window / 力扣open in new window

                                                  Input: nums = [5,7,7,8,8,10], target = 8
                                                  Output: [3,4]
                                                  
                                                  Input: nums = [5,7,7,8,8,10], target = 6
                                                  Output: [-1,-1]
                                                  

                                                  题目描述:给定一个有序数组 nums 和一个目标 target,要求找到 target 在 nums 中的第一个位置和最后一个位置。

                                                  可以用二分查找找出第一个位置和最后一个位置,但是寻找的方法有所不同,需要实现两个二分查找。我们将寻找 target 最后一个位置,转换成寻找 target+1 第一个位置,再往前移动一个位置。这样我们只需要实现一个二分查找代码即可。

                                                  public int[] searchRange(int[] nums, int target) {
                                                      int first = findFirst(nums, target);
                                                      int last = findFirst(nums, target + 1) - 1;
                                                      if (first == nums.length || nums[first] != target) {
                                                          return new int[]{-1, -1};
                                                      } else {
                                                          return new int[]{first, Math.max(first, last)};
                                                      }
                                                  }
                                                  
                                                  private int findFirst(int[] nums, int target) {
                                                      int l = 0, h = nums.length; // 注意 h 的初始值
                                                      while (l < h) {
                                                          int m = l + (h - l) / 2;
                                                          if (nums[m] >= target) {
                                                              h = m;
                                                          } else {
                                                              l = m + 1;
                                                          }
                                                      }
                                                      return l;
                                                  }
                                                  

                                                  在寻找第一个位置的二分查找代码中,需要注意 h 的取值为 nums.length,而不是 nums.length - 1。先看以下示例:

                                                  nums = [2,2], target = 2
                                                  

                                                  如果 h 的取值为 nums.length - 1,那么 last = findFirst(nums, target + 1) - 1 = 1 - 1 = 0。这是因为 findLeft 只会返回 [0, nums.length - 1] 范围的值,对于 findFirst([2,2], 3) ,我们希望返回 3 插入 nums 中的位置,也就是数组最后一个位置再往后一个位置,即 nums.length。所以我们需要将 h 取值为 nums.length,从而使得 findFirst返回的区间更大,能够覆盖 target 大于 nums 最后一个元素的情况。

                                                  编辑此页open in new window
                                                  上次编辑于: 2022/5/21 06:28:55
                                                  贡献者: yzqdev
                                                  上一页
                                                  Leetcode 题解
                                                  下一页
                                                  Leetcode 题解 - 位运算
                                                  powered by vuepress-theme-home